国产午夜精品久久久久免费视-国产午夜三级-国产性大片黄在线观看在线放-国产性老妇女做爰在线-一区一精品-一区在线观看

五年級數學《分數的基本性質》教學設計

時間:2022-04-20 18:10:11 教學設計 我要投稿

五年級數學《分數的基本性質》教學設計(通用15篇)

  作為一名專為他人授業解惑的人民教師,時常需要準備好教學設計,借助教學設計可以更好地組織教學活動。那么問題來了,教學設計應該怎么寫?下面是小編收集整理的五年級數學《分數的基本性質》教學設計,僅供參考,大家一起來看看吧。

五年級數學《分數的基本性質》教學設計(通用15篇)

  五年級數學《分數的基本性質》教學設計 篇1

  一、教學目標

  1、經歷探索分數基本性質的過程,理解分數的基本性質。

  2、能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。

  3、經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。

  二、 教學重、難點

  教學重點是:分數的基本性質。

  教學難點是:對分數的基本性質的理解。

  三、教學方法

  采用了動手做一做、觀察、比較、歸納和直觀演示的方法

  四、教學過程

  (一)故事引入,揭示課題

  1、教師講故事。

  猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?

  討論:哪只猴子分得的多?讓學生發表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。

  引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)

  2、組織討論。

  (1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,14=28=312,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。

  (2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:34=68=912。

  (3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出:12=24=2040。

  3、引入新課:黑板上三組相等的分數有什么共同的特點?

  學生回答后板書:

  分數的分子和分母變化了,

  分數的大小不變。

  它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。

  (二)比較歸納,揭示規律

  1、出示思考題。

  比較每組分數的分子和分母:

  (1)從左往右看,是按照什么規律變化的?

  (2)從右往左看,又是按照什么規律變化的?

  讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

  2、集體討論,歸納性質。

  (1)從左往右看,由34到68,分子、分母是怎么變化的?

  引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到68。

  板書:

  (2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。

  (3)引導口述:34的分子、分母都乘以2,得到68,分數的大小不變。

  (4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。

  (板書:都乘以相同的數)

  (5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都除以相同的數,分數的大小不變。

  (板書:都除以)

  (6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?

  (板書:零除外)

  (7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。

  3、出示例2:把12和1024化成分母是12而大小不變的分數。

  思考:要把12和1024化成分母是12而大小不變的分數,分子、分母怎么變化?變化的依據是什么?

  4、討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

  5、質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

  (三)溝通說明,揭示聯系

  通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

  (四)多層練習,鞏固深化

  1、口答。(學生口答后,要求說出是怎樣想的?)

  2、判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。)

  教學反思:

  學生是學習的主人,教師是數學學習的組織者、引導者與合作者。因此數學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調動學生的學習積極性,向學生提供充分從事數學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數學知識和技能,充分發揮學生的能動性和創造性。《分數的基本性質》的教學設計一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的。具體表現在:

  1、學生在故事情境中大膽猜想。

  通過創設“猴王分餅”的故事,讓學生猜測一組三個分數的大小關系,為自主探索研究“分數的基本性質”作必要的鋪墊,同時又很好地激發了學生的學習熱情。

  2、學生在自主探索中科學驗證。

  在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

  3、讓學生在分層練習中鞏固深化。

  在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數的基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

  反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

  五年級數學《分數的基本性質》教學設計 篇2

  教學內容:

  分數的基本性質

  教學目標:

  1、知識目標:通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。

  2、能力目標:培養學生的觀察能力、動手操作能力和分析概括能力等。

  3、情感目標:讓學生在學習過程中養成互相幫助、團結協作的良好品德。

  教學準備:

  長方形紙片、彩筆、各種分數卡片。

  教學過程

  一、創設情境,激發興趣

  1、課件示故事。同學們,今天是快樂的,老師祝愿同學們節日快樂!在我們歡慶自己的節日時,花果山圣地也早已是一派節日喜慶的氣氛。

  【六一節到了,猴山上張燈結彩,小猴們享受著節日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多。”】

  “同學們,猴王真的分得不公平嗎?”

  二、動手操作、導入新課

  同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。

  任選一小組的同學臺前展示實驗報告,并匯報結論。

  教師根據學生匯報板書:14=28=312

  2、組織討論。

  (1)通過操作我們發現三只猴子分得的餅同樣多,表示它們分得餅的分數是相等關系。那么,這三個分數什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。

  (2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?學生通過觀察演示得出結論教師板書:34=68=912。

  3、引入新課:黑板上二組相等的分數有什么共同的特點?學生回答后板書:分數的分子和分母, 分數的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的分子和分母變化有規律嗎?我們今天就來共同探討這個變化規律。

  三、比較歸納,揭示規律。

  請每組拿出探究報告,任意選擇黑板上的二組相等分數中的一組,共同討論、探究,并完成探究報告。

  1、課件出示探究報告。

  2、分組匯報,歸納性質。

  (1)從左往右看,分子、分母的變化規律怎樣?選擇一組學生根據探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。

  (根據學生回答板書:同時乘上相同的數)

  (2)從右往左看,分數的分子和分母又是按照什么規律變化的?

  (根據學生的回答板書:除以 )

  (3)有與這一組探究的分數不一樣的嗎?你們得出的規律是什么?

  (4)綜合剛才的探究,你發現什么規律?

  根據學生的回答,揭示課題,

  討論:為什么性質中要規定“零除外”?

  (紅筆板書:零除外)

  (5)齊讀分數的基本性質。在分數的基本性質中,你認為要提醒大家注意些什么?(同時、相同的數、0除外)。為什么?你能舉例說明嗎?教師則根據學生回答,在相應的字下面點上著重號。

  師生共同讀出黑板上板書的分數基本性質(要求關鍵的字詞要重讀)。

  3、智慧眼(下列的式子是否正確?為什么?)

  (1)35=3×25=65 (生:35的分子與分母沒有同時乘以2,分數的大小改變。)

  (2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數的大小不同,分數的大小也不同)

  (3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數的大小不相等。)

  (4)25=2×x5×x=2x5x (生:x在這里代表任何數,當x=0時,分數的大小改變。)

  4、示課件討論:現在你知道猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數表示為?如果要五塊呢?

  三、回歸書本,探源獲知

  1、瀏覽課本第107—108頁的內容。

  2、看了書,你又有什么收獲?還有什么疑問嗎?

  3、師生答疑。

  你會運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質嗎?

  4、自主學習并完成例2,請二名學生說出思路。

  四、多層練習,鞏固深化。

  1、熱身房。35=3×()5×()=9()

  824=8÷()24÷()=()3

  學生口答后,要求說出是怎樣想的?

  五年級數學《分數的基本性質》教學設計 篇3

  教學目標:

  結合趣味故事經歷認識分數的基本性質的過程。

  初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。

  經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣

  教學重點:理解掌握分數的基本性質。

  教學難點:歸納分數的性質。

  學生準備:長方形紙片。

  一、創設故事情境,激發學生學習興趣并揭示課題。

  編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?

  讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。

  二、小組合作,探究新知:

  1、動手操作、形象感知

  出示課件,讓學生觀察討論圖中分數的涂色部分是多少?

  A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?

  B、追問:你能通過繼續對折,每次找一個和1/4相等的其他分數嗎?

  C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。

  2、觀察比較、探究規律

  (1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。

  (2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?

  (3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題

  (4)通過從左到右的觀察、比較、分析,你發現了什么?

  使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。

  【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】

  3、引導觀察:請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?

  觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:

  先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規律?

  4、歸納規律

  提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?

  學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這是分數的基本性質”

  5、小結

  同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?

  【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】

  四、鞏固強化,拓展應用

  多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。

  五、游戲找朋友。

  六、布置作業:

  在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。

  五年級數學《分數的基本性質》教學設計 篇4

  教學目標

  1、讓學生通過經歷預測猜想——實驗分析——合情推理——探究創造的過程,理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。

  2、根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。

  3、培養學生觀察、分析和抽象概括的能力,滲透事物是互相聯系、發展變化的辯證唯物主義觀點。體驗到數學驗證的思想,培養敢于質疑、學會分析的能力。

  教學重點使學生理解分數的基本性質。

  教學難點讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。

  教學過程

  一、故事情景引入

  同學們,每年的中秋節你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統風俗。去年的中秋節,易老師的鄰居李奶奶家里,發生了一件有趣的事情,大家想不想知道?

  好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數)你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。

  同學們,你們覺得奶奶公平嗎?現在同桌之間討論一下。

  討論完了請舉手。

  生甲:“我覺得不公平,小紅分得多。”

  生乙:“我覺得小明分得多。”

  生丙:“我覺得公平,他們三個分得一樣多。”

  師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節課同學們就會明白了。”

  二、新授

  師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”

  請你們把這三張圓片疊起來,比一比大小,看看怎么樣?

  生:“三張圓片一樣大。”

  1、師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了。”

  首先,請在第一張圓片上表示出它的1/3;

  再在第二張圓片上表示出它的2/6;

  然后在第三張圓片上表示出它的3/9。

  好了,大家動手分一分。(教師巡視指導)

  2、師:“分完了的請舉手?

  老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)

  下面請哪位同學說一說,你是怎么分的?”

  生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”

  生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”

  師:“那九分之三又是怎么得到的呢?大家一起說。”

  生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”

  (學生說的同時,教師操作,分完后把圓片貼在黑板上。)

  3、師:“同學們,觀察這些圓的陰影部分,你有什么發現?”

  小結:原來三個圓的陰影部分是同樣大的。

  師:“ 現在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)

  生:“奶奶分月餅是公平的,因為他們三個分得的月餅一樣多。”

  師:“現在我們的意見都統一了,奶奶是非常公平的,他們三個人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數的大小怎么樣呢?”

  生甲:“通過圖上看起來,這三個分數應該是一樣大的。”

  生乙:“這三個分數是相等的。”

  師:“剛才的試驗證明,它們的大小是相等的。”(板書,打上等號)

  4、研究分數的基本規律。

  師:“我們仔細觀察這一組分數,它的什么變了,什么沒變?”

  生甲:“三個分數的分子分母都變了,大小沒變。”

  師:“那它的分子分母發生了怎樣的變化呢?讓我們從左往右看。

  第一個分數從左往右看,跟第二個分數比,發生了什么變化?”

  生乙:“它的分子分母都同時擴大了兩倍。”

  師:“跟第三個分數比,它又發生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。

  再引導學生反過來看,讓學生自己說出其中的規律。(邊講邊板書)

  教師小結:“剛才大家都觀察得很仔細,這組分數的分子分母都不同,它們的大小卻一樣,那么,分子分母發生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結一下,好嗎?”

  學生發言

  小結:像分數的分子分母發生的這種有規律的變化,就是我們這節課學習的新知識。分數的基本性質。

  5、深入理解分數的基本性質。

  師:“什么叫做分數的基本性質呢?就你的理解,用自己的語言說一說。”(學生討論后發言)

  師:剛才同學們都用自己的語言說了分數的基本性質,我們的書上也總結了分數的基本性質,現在請打開書看到108頁。看看書上是怎么說的,是你說得好,還是書上說得好,為什么?

  齊讀分數的基本性質,并用波浪線表出關鍵的詞。

  生甲:我覺得“零除外”這個詞很重要。

  生乙:我覺得“同時”“相同”這兩個詞很重要。

  師:想一想為什么要加上“零除外”?不加行不行?

  讓學生結合以前學過的商不變的性質討論,為什么加“零除外”。

  教師小結:“以三分之一這個分數為例,它的分子分母同時除以零,行嗎?不行,除數為零沒意義。所以零要除外。同時乘以零呢?我們就會發現,分子分母都為零了,而分數與除法的關系里,分母又相當于除數,這樣的話,除數又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)

  三、應用

  1、學了分數的基本性質到底又什么用呢?老師告訴你們,根據分數的基本性質,我們就能變魔術一樣,把一個分數變成多個跟它大小一樣,分子分母卻不同的新分數。下面就讓我們來變個魔術。

  2、學生練習課本例題2,兩名學生在黑板上做。

  3、學生自己小結方法。

  4、按規律寫出一組相等的分數。

  五年級數學《分數的基本性質》教學設計 篇5

  教學目標

  (一)理解和掌握分數的基本性質。

  (二)能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。

  (三)培養學生觀察、分析和抽象概括的能力,滲透事物是相互聯系,發展變化的辯證唯物主義觀點。

  教學重點和難點

  (一)理解和掌握分數的基本性質。

  (二)歸納分數的基本性質,運用性質轉化分數。

  教學用具

  教具:投影片,三張相同的長方形紙,一面為白色,另一面分別給

  學具:每位同學準備三張相同的長方形紙片。

  教學過程設計

  (一)復習準備

  1.口答:(投影片)

  根據 120÷30=4,不用計算直接說出結果:

  (120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。

  2.說一說依據什么可以不用計算直接得出商的?

  3.說出商不變的性質。

  教師:除法有商不變性質,分數與除法又有關系,分數有沒有類似的性質呢?下面就來研究這個問題。

  (二)學習新課

  1.分數基本性質。

  (1)教師取出一張長方形白紙,說明這為單位“1”,再取出同樣的兩張白紙,重疊放在一起請學生觀察,問:三張紙重疊后完全重合,說明什么?(三個單位“ 1”同樣大)教師把三張紙分貼在黑板上。

  教師請同學取出自己準備的三張長方形紙,并比一比是不是同樣大。

  教師:請分別把它們平均分成2份;4份,6份(折出來),并分別給其中的1份,2份和3份涂上顏色或畫上陰影。然后把涂了顏色的部分用分數表示出來。

  學生口答后,老師把黑板上的紙片翻面,露出涂了色的一面,板書:

  教師:請比較這三個分數的大小?

  你根據什么說這三個分數相等?

  學生口答后老師用等號連結上面三個分數。

  (2)教師:這幾個分數的分子和分母都不相同,但三個分數的大小是相等的,下面我們來研究在保持分數大小不變的情況下,分子分母的變化有沒有什么規律?

  請同學觀察,思考和討論。投影出思考題:

  如何?

  結果如何?

  變,那么分子,分母同時乘以4,乘以5,乘以6呢?規律是什么?

  學生口答后,教師小結并板書:分數的分子和分母同時乘以相同的數,分數大小不變。(留出“或者除以”的空位。)

  的變化規律是什么?(學生小組討論后匯報)

  教師板書:

  教師:試說一說這時分子、分母的變化規律?

  學生口答后老師小結:分數的分子和分母同時除以相同的數,分數大小不變。板書補出“除以”。

  教師:想一想,分數的分子、分母都乘以或除以0可以嗎?為什么?(不行。)

  (3)請根據上面的研究,說一說你發現了什么規律?請概括地說一說。

  學生口述分數基本性質的內容,老師把板書補充完整。

  教師:這就是分數的基本性質,是這節課研究的問題。

  板書出課題:分數基本性質。

  請學生打開書讀兩遍。

  教師:想一想,如何用整數除法中商不變的性質說明分數基本性質?(舉例說明)

  用學生自己的例題說明后,用投影片再說明:

  口答填空:(投影片)

  2.把一個分數化成大小相等,而分子或分母是指定數的分數。

  分子應怎樣變化?誰隨著誰變?

  化?誰隨著誰變?

  教師:上面兩個分數的變化依據是什么?

  (2)口答練習:(學生口答,老師板書。)

  教師:利用分數基本性質,可以把分數化成大小相等而分子或分母是指定數的分數。

  (三)鞏固反饋

  1.口答:(投影片)

  2.在括號里填上“=”或“≠”。(投影)

  3.在( )里填上適當的數。(投影)

  4.判斷正誤,并說明理由。

  (四)課堂總結與課后作業

  1.分數基本性質。

  2.把分數化成大小相同而分子或分母是指定數的分數的方法。

  3.作業:課本108頁練習二十三,1,2,4,5。

  課堂教學設計說明

  分數基本性質是在分數大小不變的前提下研究分子、分母的變化規律。所以在教學過程中,抓住“變化”作為主線,設計思考題引導學生觀察、對比、分析,使學生在變化中找出規律、概括出分數的基本性質。安排例2,是讓學生運用規律使分數產生變化。這樣,從兩方面方面加深學生對分數基本性質的理解。

  在學生掌握了分數基本性質后,安排他們舉例討論,以溝通分數基本性質和商不變性質之間的內在聯系,便于學生能把新舊知識融為一體。

  在整個學習過程中都是學生活動為主,這樣有利于培養學生觀察、分析和抽象概括的能力。

  新課教學分為兩部分。

  第一部分學習分數基本性質。分三層,通過學生活動,學生從直觀上認識到分子、分母不相同的分數有可能相等;研究分子、分母的變化規律;概括分數基本性質,并用商不變性質來說明。

  第二部分是應用分數基本性質,使分數按要求進行變化。分兩層,根據分母需要,確定分子、分母需要擴大或縮小的倍數;根據分子需要,確定分子、分母需要擴大或縮小的倍數。

  板書設計

  五年級數學《分數的基本性質》教學設計 篇6

  教材簡析:

  分數的基本性質是以分數大小相等這一概念為基礎的。因為分數與整數不同,兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。教學時,可引導學生觀察一組相等分數的分子、分母是按什么規律變化的,再結合分數的意義歸納出分數的基本性質。由于分數和整數除法存在著內在聯系,所以分數的基本性質也可以利用整數除法中商不變的性質來說明。

  設計理念:

  分數的基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。因此我把學生的學習定位在自主建構知識的基礎上,建立了猜想試驗分析合情推理探究創造的教學模式。

  在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結論。當學生得出分數的分子、分母都乘或除以同一個數,分數的大小不變之后,再結合商不變的性質深入理解,把知識融會貫通。整個教學過程注重讓學生經歷了探索知識的過程,使學生知道這些知識是如何被發現的,結論是如何獲得的,體現了方法比知識更重要這一新的教學價值觀,構建了新的教學模式。

  《數學課程標準》指出:學生是學習數學的主人,教師是數學學習的組織者、引導者與合作者。這就要求我們在教學活動中應該為學生提供大量數學活動的機會,讓學生去探索、交流、發現,從而真正落實學生的主體地位。

  教學目標:

  1、使學生理解和掌握分數的基本性質,能應用性質解決一些簡單問題

  2、培養學生觀察、分析、思考和抽象、概括的能力

  3、滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育

  教學重點:

  使學生理解和掌握分數的基本性質,培養學生的抽象、概括的能力。

  教學難點:

  讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。

  教具準備:

  每生三張正方形紙

  教學方法:

  演示法、觀察法、討論法、交流法。

  五年級數學《分數的基本性質》教學設計 篇7

  教學目的:

  理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。

  2.理解和掌握分數的基本性質。

  3.較好實現知識教育與思想教育的'有效結合。

  教學難點:

  理解和掌握分數的基本性質,并運用分數的基本性質解決問題,進一步加深分數與除法之間的關系。

  教學準備:

  板書有關習題的幻燈片。

  教學過程:

  一、復習

  1.出示

  在括號里填上適當的數:

  指名說一說結果,并說一說你是根據什么填的?

  二、課堂練習:

  1.自主練習第4題。

  學生先獨立做,教師巡視,并個別指導,集體訂正。

  教師板書題目中的線段,指名讓學生板演。

  在直線那些分數用同一個點表示是什么意思?(就是問哪幾個分數相等。)

  怎樣找出相等的分數?

  讓學生自己找。集體訂正是要求學生說一說你是根據什么找出相等的分數的?

  然后要求學生在書上把這幾個相應的點找出來。指名板演。

  2.自主練習第5題。

  先讓學生獨立做,教師巡視。個別指導。

  指名說一說你的結果,并說一說你是根據什么填的。重點要求學生說清楚利用分數的基本性質來進行填空。

  教師根據學生的回答選擇幾個題目進行板書。

  3.自主練習第6題。

  先讓學生獨立做。教師巡視并個別指導。注意差生中出現的問題。

  集體訂正。指名說一說自己的計算過程和結果。

  教師根據學生的回答選擇幾個題目進行板書。

  4.自主練習第7題。

  學生獨立做。教師要求有困難的學生分組討論,教師個別指導。

  集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據和理由。

  5.自主練習第8題。

  學生先獨立做。

  集體訂正時,教師先要求學生說一說可以用哪些方法來比較這些分數的大小?哪種方法最好?

  五年級數學《分數的基本性質》教學設計 篇8

  一、 教材

  根據課程標準的要求,基于對教學內容的把握,本課時我確定的教學目標為:

  1.理解和掌握分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。

  2.通過猜想、驗證、歸納、總結等活動,經歷分數的基本性質的探究過程,體會舉具體事例、數形結合的思考方法,感受抽象、推理的基本數學思想。

  3.在自主探究與合作交流的過程中,感受數學知識之間的聯系,激發學生探究學習的興趣。我確定本目標的依據有三點:

  一是基于對課程標準的理解。

  《義務教育數學課程標準(2011年版)》在學段目標的第二學段指出學生要“在觀察、實驗、猜想、驗證等活動中,發展合情推理能力,能進行有條理的思考,能比較清楚地表達自己的思考過程”。

  二是基于對教材的認識。

  《分數的基本性質》是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。

  三是基于對學情的認識。

  作為舊課新上,如何讓學生在重新學習的過程中對學習活動任然保持濃厚興趣,從探究活動中得到新的發展,上出數學味,上出新意,我在思考。本節課常規的是創設情境,在情景中提煉出等式,最終形成性質。因此在教學時,我沒有從具體的情境入手,而是從思考一連串的問題開始,通過實驗、猜想、驗證、結論,從等式的驗證上升到規律的發現和歸納,經歷定律由特殊到一般的歸納推理過程,在這個過程中積累數學經驗、滲透數學思想、掌握數學方法。

  據此,我將教學重點確定為:通過猜想、驗證、歸納、總結等活動,讓學生經歷分數的基本性質的探究過程。教學難點確定:理解和掌握分數的基本性質。

  二、教法

  課程標準指出教師要關注已有的知識經驗及認知水平,發揮組織者、引導者、合作者的作用。本節課我綜合采用了引導發現法、啟發式教學法,直觀演示法,組織學生經歷實驗、猜測、驗證、得出結論的過程。

  三、說學法

  學生是學習的主體,學生的學習活動應該是生動的、活潑的、富有個性的,因此,在本節課教學中,我主要采用觀察發現法、動手操作法、舉例驗證法,引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數學活動經驗。

  四、說教學過程

  本著讓學生“主動參與、樂于探究、學有所得”的理念,結合五年級學生的認知水平和年齡特點,結合教材的編排意圖和學情特點,我設計了如下教學環節:

  1.聯系舊知,質疑引思。

  2.自主操作,驗證猜想

  3.知識應用,鞏固提高

  4.回顧總結,完善認知。

  環節一:聯系舊知,質疑引思。

  “疑是思之始,學之端。”思考這樣一連串的問題,目的是喚醒學生已有的知識經驗;迅速地點燃孩子們求知欲望;引發學生的數學思考,為主動探究新知識積聚動力。

  環節二:操作體驗,概括規律

  1.觀察發現,提出猜想。

  通過找與1/2相等的分數,思考證明方法,觀察等式,發現規律,于是提出猜想

  2.舉例操作,驗證猜想。

  課標指出“學生應當有足夠的時間和空間經歷觀察、實驗、猜測、推理、驗證等活動的過程”。本節課驗證環節,將“分子分母怎樣變才使得分數的大小不變”設定為研究的關鍵點,然后圍繞這一關鍵點讓學生展開了操作、感悟、分析、推理等一系列的數學活動,引導學生通過比較全面的大量的例子來驗證結論,在觀察、實驗、猜測、驗證的活動中發展合情推理能力。讓學生試著用數學的思維去思考,體驗如何運用新舊知識間的聯系和遷移去分析和解決問題,培養學生好學善思的良好品質。

  3.概括性質,深化理解

  通過觀察算式,經歷由特殊到一般的歸納推理,發現分數的基本性質。

  4.運用規律,完成例2

  嘗試運用發現的規律,解決問題。

  環節三:知識應用,鞏固提高

  在有層次的練習過程中,形成技能,發展學生的智力,達成本節課的教學目標,突出重點,突破難點。本節課,我設計了兩個層次的練習。一是點對點的基礎練習,二是靈活運用所學知識解決生活中實際問題。

  環節四:回顧總結,完善認知

  通過回顧,梳理所學的知識,提煉數學方法,聯系新舊知識,使學生的認知結構得到補充和完善。

  有人說的好,教育是一門永無止境的藝術,我知道這節課還有很多不足,懇切的希望各位能給予我更多的寶貴建議,有了你們的幫助我一定收獲更多,成長更快。

  五年級數學《分數的基本性質》教學設計 篇9

  教學目標:

  1.理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。

  2.理解和掌握分數的基本性質。

  3.較好的實現知識教育與思想教育的有效結合。

  教學重點:

  理解和掌握分數的基本性質。

  教學難點:

  能熟練、靈活地運用分數的基本性質。

  教學過程:

  一、創設情景

  師:同學們,為了讓你們了解到更多的科技知識,在科技周活動中,學校做了三塊科普展板(投影出示教材中的三塊展板)。同學們認真觀察,你們能提出什么問題?

  師:猜想對解決問題很重要,它們到底相不相等?下面以小組為單位,想辦法來驗證一下。

  二、新授

  師:同學們想了很多好的方法,哪個小組愿意匯報一下?

  生1:我們組是用畫圖的方法來驗證的。我們先畫了三個大小一樣的正方形表示三塊展板,把它們分別平均分成2份、4份和8份,再分別去其中的1份、2份和4份涂上顏色(展示學生畫的圖)。通過比較我們發現,涂色部分的大小是相等的,所以

  生2:我們組是用折紙的方法來驗證的。我們先取了三根同樣長的紙條,通過對折把它們分別平均分成2份、4份和8份,分別涂色表示(展示學生的折紙情況)。通過折紙我們組也發現(學生在小組中討論、驗證)

  師:我們發現的這個規律,就是分數的基本性質。

  同學們現在小組內總結一下,什么是分數的基本性質?

  (學生認真討論)

  師:同學們匯報一下你們的討論結果。

  三、 自主練習 鞏固提高

  課本第80頁1、2、3、題。

  其中,第1題引導學生通過涂色和比較,加深對分數基本性質的直觀感受。

  第2題二生爬黑板板演,第3、4 題學生自做。師巡視指導。

  課堂小結 :

  一生小結,他生補充,教師評判。

  五年級數學《分數的基本性質》教學設計 篇10

  設計說明

  1.注重情境創設,激發學生的學習興趣。

  偉大的科學家愛因斯坦說過:“興趣是最好的老師。”也就是說一個人一旦對某個事物產生了濃厚的興趣,就會主動地去求知、去探索、去實踐,并在求知、探索、實踐中產生愉快的情緒,因此教學時要重視興趣在智力開發中的作用。本課時的教學通過分餅這一故事情境來創設一種和諧、愉悅的氣氛,激發學生的學習興趣和探究新知的積極性。聽教師講完故事之后,學生能說出三個孩子分到的餅的大小是一樣的,并能非常流利地說出三個孩子分別分到每張餅的。接著教師提問設疑,導入新課。

  2.突出學生的主體地位,在實踐操作中掌握新知。

  學生是學習的主體,教師要時刻關注學生的主體地位。在探究分數的基本性質的過程中,給予學生充分的學習空間,讓學生自主探究,經歷折一折、畫一畫、剪一剪、比一比的過程,得出分數的基本性質,體驗成功的快樂。

  課前準備

  教師準備 PPT課件

  學生準備 若干張同樣大小的圓形紙片 彩筆

  教學過程

  故事引入

  1.教師講故事。

  師:老師給大家講一個分餅的故事,你們想聽嗎?(想)三毛家有三兄弟,三兄弟都特別愛吃餅。一天,媽媽買回3張同樣大小的餅,準備分給他們三兄弟吃,媽媽先把第一張餅平均分成兩份,取出其中的一份給了大毛;二毛看見了,說:“太少了,我要吃兩份。”媽媽點點頭,把第二張餅平均分成四份,取出其中的兩份給了二毛;三毛連忙說:“我最小,我要比他們多吃一些,我要吃四份。”媽媽又點點頭,把第三張餅平均分成八份,取出其中的四份給了三毛。

  大毛、二毛、三毛都滿意地笑了,媽媽也笑了。

  設計意圖:借助故事給學生創設一個溫馨的學習情境,自然導入新課,迅速吸引學生的注意力,激發學生的學習興趣。

  2.探究驗證。

  (1)提出猜想。

  師:同學們,你們知道三兄弟之間到底誰分得的餅多嗎?

  生:同樣多。

  師:這只是大家的猜想,大家的猜想對不對呢?下面就讓我們當一次小數學家,一起來驗證這個猜想吧!

  (2)驗證猜想。

  請同學們拿出課前準備好的圓形紙片,模擬一下媽媽給三兄弟分餅的情境。

  ①折一折:把每張圓形紙片都看作單位“1”,分別把它們平均折成2份、4份、8份。

  ②涂一涂:在折好的圓形紙片上分別把其中的1份、2份、4份涂上顏色,并用分數表示出來。

  ③剪一剪:把圓形紙片中的涂色部分剪下來。

  ④比一比:把剪下的涂色部分重疊,比一比。

  師:通過比較,結果是怎樣的?

  生:同樣大。

  設計意圖:通過自主猜想、自主驗證、自主發現,讓學生在折一折、涂一涂、剪一剪、比一比、說一說的實踐活動中把靜態的知識轉化為動態的求知過程,經歷分數的基本性質的形成過程。

  3.揭示課題。

  師:三兄弟分得的餅同樣多,那媽媽是用什么辦法來滿足他們的要求并且又分得那么公平的呢?這就是我們今天要學習的內容:分數的基本性質。(師板書,生齊讀課題)

  探究新知

  1.觀察比較,探究規律。

  (1)請同學們觀察,比較三個分數的大小。

  師:三兄弟分得的餅同樣多,那么這三個分數的大小是怎樣的呢?(相等)

  師:從這里我們可以知道,三兄弟分得的餅和剩下的餅同樣多,都是一張餅的一半。

  (2)請同學們仔細觀察,這三個分數什么變了,什么沒變?(分子、分母變了,大小沒變)

  師:這三個分數的分子、分母都不一樣,大小卻相等,這其中到底蘊藏著什么奧秘呢?

  (課件出示:比較它們的分子和分母)

  ①從左往右看,是按照什么規律變化的?

  ②從右往左看,又是按照什么規律變化的?小組內討論,交流一下你們的發現。

  師:我們從左往右看,誰愿意說一說自己的發現?(分數的分子和分母同時乘相同的數,分數的大小不變)

  師:我們從右往左看,誰愿意說一說自己的發現?[分數的分子和分母同時除以相同的數(0除外),分數的大小不變]

  師:你們能把這兩個發現合并成一句話嗎?[分數的分子和分母同時乘或者除以相同的數(0除外),分數的大小不變]

  師:請同學們思考一下,這個數為什么不能是0?同桌之間討論。(因為在分數中,分母不能為0,并且在除法里,0不能作除數,所以這個數不能是0)

  (3)教師總結分數的基本性質。(板書)

  五年級數學《分數的基本性質》教學設計 篇11

  教學內容:教科書第60~61頁,例1、例2、

  練一練,練習十一第1~3題。

  教學目標:

  1、使學生經歷探索分數基本性質的過程,初步理解分數的基本性質。

  2、使學生能運用分數的基本性質,把一個分數化成指定分母或分子而大小不變的分數。

  3、使學生在觀察、操作、思考和交流等活動中,培養分析、綜合和抽象,概括的能力,體現數學學習的樂趣。

  教學重點:讓學生在探索中理解分數的基本性質。

  教學過程:

  一、導入新課

  1、我們已經學習了分數的有關知識,這節課在已經掌握的知識基礎上繼續學習。

  2、出示例1圖。

  你能看圖寫出哪些分數?你是怎樣想的?說出自己的想法。

  二、教學新課

  1、教學例1

  (1)這四個分數,為什么分母不同呢?前兩個分數的分子為什么都是1?

  (2)你其中哪幾個分數是相等的嗎?你是怎么知道這三個分數相等的?

  (3)演示驗證。

  2、教學例2

  (1)取出正方形紙,先對折,用涂色部分表示它的1/2。學生操作活動。

  (2)你能通過繼續對折,找出和1/2相等的其它分數嗎?學生操作活動。交流匯報。對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數表示?(板書)

  (3)得到的這些分數與1/2相等嗎?能不能再寫一些與1/2相等的數?

  (4)觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?觀察、思考,試著完成填空。在小組中說說你有什么發現?

  (5)小結。分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這是分數的基本性質。板書課題:分數的基本性質。

  (6)為什么要“0”除外呢?

  (7)你能根據分數的基本性質,寫出一組相等的分數嗎?學生嘗試完成。

  (8)根據分數和除法的關系,你能用整數除法中商不變的規律來說明分數的基本性質嗎?在小組中說一說。

  3、完成練一練。

  (1)完成第1題。涂色表示已知分數,再在右圖中涂出相等部分。說說怎么想的?

  (2)完成第1題。獨立完成,匯報想法。5到15乘了幾?1怎么辦?先看哪個數?(分子9)9到1除以幾?分母18怎么辦?

  三、鞏固練習

  1、完成練習十一第1題。平均分成了多少份?表示多少份?涂色表示。涂色部分還表示幾分之幾?

  2、完成第2題。獨立完成,交流想法。

  四、課題總結

  今天有了什么收獲?你認為學習了分數的基本性質有什么作用?在什么時候可能會用到它?

  五年級數學《分數的基本性質》教學設計 篇12

  教學前的思考:

  一、一則Flash動畫故事引入:從前有座山,山里有座廟,廟里有個老和尚和一個小和尚,哦!不對,是三個小和尚。小和尚最喜歡吃老和尚烙的餅了。有一天,老和尚做了三塊一樣大小的餅,想給小和尚吃,還沒給,小和尚就叫開了。矮和尚說:“我要一塊!”高和尚說:“我要兩塊!”胖和尚說:“我不要多,只要四塊!”老和尚聽了二話沒說,立刻把一塊餅平均分成四塊,取其中的一塊給了矮和尚;把第二塊餅平均分成八塊,取其中的兩塊給了高和尚;把第三塊餅平均分成十六塊,取其中的四塊給了胖和尚,一一滿足了他們的要求。同學們,你知道哪個和尚吃的多嗎?---教師播放這則故事為學生提供“猜想”素材。“猜想、驗證”不但是科學研究的方法,也是一種很好的數學學習方法。由此我聯想到“性質”的學習過程是否也可以讓學生在猜想、驗證中主動生成。

  二、學生動手操作,用事實說明,作好新知鋪墊:在揭題前,我設計了讓學生動手操作的方法,用三個同樣大小的圓折紙、涂色,來調動學生的多種感觀,充分感知數學事實,引導學生觀察、思考,激發學生的求知欲,活躍課堂氣氛,為“驗證”“性質”作好鋪墊。

  三、得出結論后,滲透“形式與實質”的辯證觀點:揭示“性質”后,教師讓學生回顧故事內容,驗證“猜想”到底哪個和尚吃的多,從形式上看矮和尚吃的多,但比較的事實說明吃的一樣多。教師再一次列舉生活中的事例說明“形式與實質”的辯證觀點。

  教學設計:

  一 故事提供“猜想”素材:Flash動畫故事引入(教師出示課件)

  師:今天老師很高興和同學們在一起共同學習,同學們心情怎樣?

  生:高興!

  師: 老師給大家帶來了一個禮物,請同學們仔細欣賞。(教師出示Flash動畫故事,學生欣賞。同時教師提出欣賞要求,)

  師:(欣賞后)同學們,你知道哪個和尚吃的多嗎?

  生1:胖和尚吃的多。

  生2:矮和尚吃的多。

  ……

  師:到底誰回答得對呢?上完這節課你們一定能得到準確的答案(通過欣賞為學生提供素材,設懸念,留給學生獨立思考的空間)

  二 用事實“驗證”,完整性質。

  1.實際操作列等式證實分數大小相等。

  師:請同學們以小組為單位,拿出三個大小相等的圓來,分別用陰影部分表示每個圓的

  (教師觀察,學生小組合作,有平均分的,有涂色的,小組成員配合默契)

  師:比較一下陰影部分的大小,結果怎樣?陰影部分相等,說明這三個分數怎樣?

  生:陰影部分的大小相等。

  師:陰影部分相等說明這三個分數怎樣?

  生:三個分數相等。

  (隨著學生的回答,老師將板書的三個分數用“=”連接。)

  2.觀察課件證實分數大小相等。

  師:(出示課件)老師有三個同樣大小的長方形,誰能用分數表示出黃色部分呢?

  師:這三個分數所表示的長度怎樣?這又說明了什么?

  (隨著學生回答老師在三個分數間用“=”連接。)

  3.初步概括分數基本性質

  師:仔細觀察兩個等式,每個等式的三個分數什么變了?什么沒變?

  生:第一個等式中的三個分數分子、分母都變了,但分數的大小沒變。(師進行評價)

  師:同學們從左到右觀察第一個等式,想一下,這三個分數的分子、分母怎樣變化才保證了分數的大小不變的?

  (教師請同學們小組討論,學生各抒己見,爭論不休,氣氛活躍。)

  師:誰能用一句話把這個變化規律敘述出來呢?(師指名口述)

  生1:從左往右看,分數的分子、分母同時擴大了,也就是分子分母都乘了一個相同的數,但三個分數的大小沒有變。(生2進行了補充)

  師:你們觀察的真仔細!請大家給點掌聲好嗎?

  (學生掌聲起,激情高長,課堂教學充滿活力。)

  師:(出示課件)請看大屏幕,老師是這樣敘述的“分數的分子、分母都乘上同一個數,分數大小不變”。

  師:同學們從左到右仔細觀察第二個等式,這三個分數的分子、分母發生了怎樣的變化,才保證了分數大小不變呢?誰能用一句話把這個變化規律敘述出來?

  (小組討論后,同法讓學生小結規律,并請同學給予評價,讓學生抒發自己的見解,體現課堂教學的民主化。然后教師在課件中補充“或除以”三個字。)

  4、完整分數基本性質:

  師:(出示課件)請同學們填空:

  (教師請一位會操作鼠標的同學在課件中填空)

  師:第3題( )里可以填多少個數?第4題呢?

  生:可以填無數個。

  師:( )里填任何數都行嗎?哪個數不行?(學生交流后老師指名回答)

  生:不能填零。

  師:為什么不能填零?

  生:分數的分母不能為零。

  (教師對學生的回答進行評價)

  師:所以我們總結的這條規律必須加上一個條件“零除外”

  (教師在課件中填上“零除外”三個紅色的字,以便引起學生的注意。)

  師:這個變化規律就是“分數的基本性質”。(指名照課件主讀出性質)

  三 深入理解分數基本性質

  1.學生自學,深入理解性質。

  師:請同學們把書翻到108頁,自讀分數的基本性質。

  師歸問:分數的基本性質里哪幾個詞比較重要?為什么“都”和“相同”很重要?為什么“分數大小不變”也很重要?為什么“零除外”也很重要?

  生:因為都乘上或除以相同的數(0除外),分數的大小才不會變化。(同學評價)

  2.學生獨立完成做一做1。(完成后小組內互相評價)

  3.找出與相等的分數:

  (教師出示課件,請一位同學在課件中連線,教師進行評價)

  4.請同學們自學并完成例2、(教師巡視,個別進行輔導)

  四 照應Flash動畫故事,滲透“形式與實質”的辯證觀點

  教師在黑板上出示自制的三個同樣大小的圓餅

  師:現在誰知道三個和尚,誰吃的多呢?(學生爭先恐后的想回答老師提出的問題)

  生:三個和沿吃的一樣多。

  師:同學們以后思考問題一定要多動腦筋,了解實質后才能得出正確答案,我們不能從形式上看著事物去做出判斷。

  五 課堂小結:這節課你有什么收獲?(學生板書課題)

  教學后的感悟:

  1.教學的整個過程是學生親自驗證的過程,通過“驗證”學生感受了數學的嚴謹性。設計以“猜想--判斷--觀察--驗證--概括--深化--提高”的環節,把知識的形成過程展現在學生的面前,使學生在掌握分數的基本性質的同時,感知到數學知識的形成過程,在這一過程中注意滲透學生自學方法、解決問題的策略、體會數學知識與生活的緊密聯系,同時教給學生學會學習,學會思考的方法。在師生共同協作的過程中,達到課堂教學方法的最優化,提高了課堂教學效益。

  2.猜想素材有利于激發學生主動學習的興趣和熱情,有利于學生思維的碰撞,開啟了學生發自內心的探索學習。

  3.教學中取舍教材、取舍手段,著眼于學生的學習。教學中既運用了信息技術,又把傳統教學手段有機地結合,讓資源充分、有效地發揮作用,優化教師的教學手段,提高課堂教學效率。

  五年級數學《分數的基本性質》教學設計 篇13

  教學目標

  1.使學生對數的整除的有關概念掌握得更加系統、牢固

  2.進一步弄清各概念之間的聯系與區別

  3.使學生對最大公約數和最小公倍數的求法掌握得更加熟練

  4.掌握分數、小數的基本性質

  教學重點

  通過對主要概念進行整理和復習,深化理解,形成知識網絡

  教學難點

  弄清概念間的聯系和區別,理解易混淆的概念

  教學步驟

  一、鋪墊孕伏

  教師談話:同學們,昨天老師讓大家在課下復習了第十冊課本中約數和倍數一章的內容,

  在這一章中我們學過了哪些概念呢?請同學們分組討論,討論時由一名同學做記錄(學生匯報討論結果)

  揭示課題:在數的整除這部分知識中,有這么多的概念,那么這些概念之間又有怎樣的聯系呢?這節課,我們就把這些概念進行整理和復習

  二、探究新知

  (一)建立知識網絡.【演示課件“數的整除”】

  1.思考:哪個概念是最基本的概念?并說一說概念的內容

  反饋練習:

  在12÷3=4 4÷8=0.5 2÷0.1=20 3.2÷0.8=4中,被除數能除盡除數的有( )個;被除數能整除除數的有( )個

  教師提問:這四個算式中的被除數都能除盡除數,為什么只有這一個算式中的除數能整除被除數呢?整除與除盡到底有怎樣的關系呢?

  教師說明:能除盡的不一定都能整除,但能整除的一定能除盡

  2.說出與整除關系最密切的概念,并說一說概念的內容

  反饋練習:下面的說法對不對,為什么?

  因為15÷5=3,所以15是倍數,5是約數( )

  因為4.6÷2=2.3,所以4.6是2的倍數,2是4.6的約數( )

  明確:約數和倍數是互相依存的,約數和倍數必須以整除為前提

  3.教師提問:

  由一個數的倍數,一個數的約數你又想到什么概念?并說一說這些概念的內容

  根據一個數所含約數的個數的不同,還可以得到什么概念?

  互質數這個概念與哪個概念有關系?它們之間有怎樣的關系呢?

  互質數這個概念與公約數有關系,公約數只有1的兩個數叫做互質數

  4.討論互質數與質數之間有什么區別?

  互質數講的是兩個數的關系,這兩個數的公約數只有1,質數是對一個自然數而言的,它只有1和它本身兩個約數

  5.教師提問:

  如果我們把24寫成幾個質數相乘的形式,那么這幾個質數叫做24的什么數?

  只有什么數才能做質因數?

  什么叫做分解質因數?

  只有什么數才能分解質因數?

  6.教師提問:

  誰還記得,能被2、5、3整除的數各有什么特征?

  由一個數能不能被2整除,又可以得到什么概念?

  (二)比較方法

  1.練習:求16和24的最大公約數和最小公倍數

  2.思考:求最大公約數和最小公倍數有什么聯系和區別?

  (三)分數、小數的基本性質

  1.教師提問:

  分數的基本性質是什么?

  小數的基本性質是什么?

  2.練習

  (1)想一想,小數點移動位置,小數大小會發生什么變化?

  (2)

  (3)下面這組數有什么特點?它們之間有什么規律?

  0.108 1.08 10.8 108 1080

  三、全課小結

  這節課我們把數的整除的有關知識進行了整理和復習,進一步弄清了各概念之間的

  聯系和區別,并且強化了對知識的運用

  四、隨堂練習

  1.判斷下面的說法是不是正確,并說明理由

  (1)一個數的約數都比這個數的倍數小

  (2)1是所有自然數的公約數

  (3)所有的自然數不是質數就是合數

  (4)所有的自然數不是偶數就是奇數

  (5)含有約數2的數一定是偶數

  (6)所有的奇數都是質數,所有的偶數都是合數

  (7)有公約數1的兩個數叫做互質數

  2.下面的數哪些含有約數2?哪些是3的倍數?哪些能同時被2、3整除?哪些能同時被2、5整除?哪些能同時被3、5整除?哪些能同時被2、3、5整除?

  18 30 45 70 75 84 124 140 420

  3.填空

  在1到20中,奇數有( );偶數有( );質數有( );合數有( );

  既是質數又是偶數的數是( )

  4.按要求寫出兩個互質的數

  (1)兩個數都是質數

  (2)兩個數都是合數

  (3)一個數是質數,一個數是合數

  5.說出下面每組數的最大公約數和最小公倍數

  42和14 36和9

  13和5 6和11

  6.0.75=12÷( )=( ) :12=

  五、布置作業

  1.把下面各數分解質因數

  24 45 65 84 102 475

  2.求下面每組數的最大公約數和最小公倍數

  36和48 16、32和24 15、30和90

  六、板書設計

  數的整除分數、小數的基本性質

  數學教案-數的整除 分數、小數的基本性質

  五年級數學《分數的基本性質》教學設計 篇14

  教學目標:

  1、理解分數的基本性質。

  2、初步掌握分數的基本性質。

  3、培養學生觀察、比較、綜合、概括的能力和初步的邏輯推理能力。

  教學重點:理解與掌握分數的基本性質。 教材分析:分數的基本性質是在學習了商不變性質及分數與除法的關系的基礎上進行教學的。它是今后學習約分和通分的依據,是分數四則運算的重要基礎知識,是學生準確進行分數加減法計算的依據。

  設計意圖:通過復習商不變的性質和分數與出發的關系,為學生探索新知提供了材料,作好了鋪墊,也為后面溝通分數基本性質與商不變性質打下了基礎。

  在新知的引入,我設計了讓學生動手操作的方法(折紙、涂色),調動學生的多種感觀充分感知數學事實,來引導學生觀察、思考,激發學生的求知欲,調動學生學習的積極性。

  通過先進的電教手段,如:投影儀,電腦等多媒體輔助教學。用形象的電腦圖象,以活潑的形式將抽象的數學概念轉變為學生易于理解概念,激發學生的學習興趣,結合一系列的具有針對性的提問,引導學生觀察思考,共同討論新知,自己歸納出分數變化的規律,即分于分母都乘以或除以相同的數,分數和大小不變。 通過電腦出示的畫象的逐步引入,使學生加深對分數基本性質的理解,逐步建立清晰的概念。這樣讓學生參與概念形成的整個過程,有利于學生學習的主動性,發展學生的邏輯思維。

  在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,難度由淺入深。

  第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲的形式,加深學生對分數基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。第5題,判斷練習,意在使學生加深對新知識的鞏固,糾正容易出錯的地方。第6題是思考題,是為了滿足學有余力的學生的需要,意在發展學生的智能。在聯系的過程中,也采用了電腦與投影及錄音機的有機結合有效地提高了課堂效率。

  教學過程: 復習舊知,導入新課 被除數 除數= 根據120 30=3 填數 (120 3) (40 3)=( ) (120 xx) (40 10)=4 (復習商不變性質) 驗證并結實課題 學生用準備好的兩張紙,進行動手操作。(感知 = ) 教師再演示,引導學生發現 、 、 、三個分數的大小相等。觀察什么在變,什么不變。把單位1平均分的分數和取的分數,也就是分數的分子和分母發生了變化,而分數的大小不便,為什么分數的分子、分母在變,而分數的大小不變?它們的變化規律是什么?(引導學生帶著問題去思考) 新授,探索新知 啟發引導,揭示規律 (1) = = = =

  從左往右觀察,探索分數的分子、分母的變化規律,引導學生去思考。討論得出:分數的分子墳墓都乘以相同的數,分數的大小不變。 ,分數的分子分母有什么變化? 呢? 它們的大小又怎樣呢?想一想,小姐出規律:分子、分母都除以相同的數,分數的大小不變。 歸納性質 誰能把上面的分數的分子分母都乘以或除以相同的數。兩句話合成一句話來說。分數的分子分母都乘以或除以相同的數,分數的大小不變。 這里指的相同的數是指什么數? 指出:分母是0的分數是沒有意義的。假如分子、分母都乘以或都除以0,也是沒有意義的。所以0除外。相同的數可以是自然數,也可以是小數,也可以是分數。

  請全班同學將結語說完整,全班讀。 小結:就是我們今天學習的內容:分數的基本性質。看書質疑。 勾出關鍵詞語,幫助理解掌握。 (在新課的教學過程中,利用計算機,將各種圖形(也就是單位1)用主動的分割形式在大屏幕上清楚地進行演示,提高學生學習的積極性,更好地理解本課的學習內容,有效地提高教學效率,使教學目標得以順利地實施。) 鞏固練習 在括號里填上適當的數使等式成立 幾組相等分數的天空練習

  (用計算機將題目演示在大屏幕上,全般一齊練習,再請個別學生說出答案,看答案是否和計算機演示的答案相同,全班同學來做小老師)

  3、請找我的好朋友練習。(以游戲的形式來進行)

  要求:(1)將幾張寫有分數的卡片發給幾位同學,請 他們看清楚上面的分數。

  ( 2 )練習開始,請有卡片的同學注意觀察,和老師受傷卡片上分數大小相等的同學走出來,看誰最快最好。 (先將卡片上的分數用大屏幕顯示出來,便于全班同學練習。)

  4、判斷對錯 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

  (這道題用計算機一題一題來演示,讓全班學生能用所學的知識來進行判斷,并能說出錯在哪里,可以請個別同學來回答,如果答對了計算機回發出以示獎勵的音樂;錯了會告訴同學錯了,再試一次。這道題的形式,充分運用了計算機的多功能作用,較生動活潑,引起學生的興趣,提高教學效果。)

  5、思考練習題 = 課堂總結 總結本課內容,復述分數的基本性質。

  五年級數學《分數的基本性質》教學設計 篇15

  (一)激趣引思、提出要求

  同學們,你們聽過阿凡提的故事嗎?今天老師也帶來了一則阿凡提的故事。讓我們一一看!誰來讀一讀?(指名讀)你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話呢?

  有一些同學知道,還有一些同學不知道。不過沒有關系,等我們學習了今天的內容之后,我相信在座的每一位同學都能夠回答。你們有信心嗎?恩,好,那我們就開始上課了!

  (二)自主探究,發現規律

  1、出示例1的四幅圖。

  我們先來看一道題目。分別用分數表示每個圖里的涂色部分。

  (1)誰來說第一個?

  全部答完后問:這里的1/3誰來說說它表示什么含義呢?3/9呢?

  同學們,你們比較比較這幾幅圖的陰影部分,想想看,你發現了什么呢?也就是說,哪3個分數是相等的呢?

  (2)師:這里有個1/2,你能說一個和1/2相等的分數嗎?

  2/4、4/8、8/16......還有吧,是不是還可以說出好多好多啊?

  那,這些分數是不是相等呢?咱們口說無憑,咱們來做個小實驗證明它門是相等的,好不好?

  先別急,先來看看有哪些實驗要求。

  咱們這個實驗的目的上一什么?驗證什么?

  咱們實驗的方法有哪些呢?

  實驗有什么要求?操作有序什么意思呢?要聽從小組長的安排

  1、實驗目的:驗證猜想

  2、方法:折一折、分一分、畫一畫、算一算......

  3、要求:小組合作,明確分工,操作有序

  我們要來比一比,哪個小組做的實驗既快又好。一會兒,我們把他的作品展示一下。好,開始!

  學生操作,老師巡視指導。

  集體交流結果。

  咱們剛才通過做實驗,發現這些分數的大小怎樣?也就是分數的大小不變。這些分數的大小相等,可是它們的分子、分母變了吧!怎么回事呢?這里面有什么規律呢?你發現了什么?能不能告訴老師。

  把你的發現先和同桌交流交流。

  生1:我發現由到,分子被擴大了2倍,分母也被擴大了2倍,所以它們是相等的。

  師:還有誰想說說你的發現?

  生2:我發現由到,分子被擴大了3倍,分母也被擴大了3倍,所以它們的大小相等。

  師:換一組數據來說說自己的發現?

  生:由到,分子、分母都被縮小了3倍,它們的大小不變。

  師:剛才同學們都說了自己的發現,想想看,要使分數的大小不變分數的分子和分母應該怎樣變化就能使分數的大小不變了呢?

  師:為什么要0除外?

  師:這就是咱們今天學習的“分數的基本性質”(板書課題)

  師:誰來說說看,分數的基本性質是什么呢?

  生:一個分數的分子和分母同時乘或除以一個相同的數(0除外),它們的大小不變。

  我們一齊讀一遍。

  師:這個分數的基本性質跟咱們以前學的什么知識有點相似啊?除法中商不變的性質你還記得嗎?

  同學們想想看,這兩個性質之間有什么關系呢?

  根據分數與除法的關系,被除數相當于分數的分子,除數相當于分數的分母,在除法當中有商不變的性質,那在分數中也有它的基本性質。

  師:好,那現在你知道阿凡提為什么會笑嗎?他又說了哪些話呢?

  師:2/6到3/9分子分母怎樣變化的?分子和分母同時乘了1.5,呢也就是說這里相同的數不僅可以指整數,還可以指小數。

  (三)鞏固練習,強化記憶

  好,那下面咱們就用今天學的知識來做幾道題,好不好?

  1、把書翻到61頁,練一練第一題,請你涂一涂填一填。我看誰的動作最快。

  集體交流。

  2、下面我們來填空補缺想理由。(出示練一練第二題)

  他們這樣填是根據什么?

  3、出示練習十一第二題

  獨立完成,集體訂正。

  (四)課堂作業,運用知識

  練習十一第三題

  (五)課堂,認識自己

  今天這節課,你學到了什么?

【五年級數學《分數的基本性質》教學設計(通用15篇)】相關文章:

《比例的基本性質》教學設計03-31

分數的基本性質教學反思范文(通用18篇)12-23

《分數的基本性質》說課稿11-13

分數的基本性質教學反思(15篇)04-11

分數的基本性質教學反思15篇12-27

分數的基本性質教學反思15篇10-26

《分數的意義和性質》數學教學反思11-17

分數的基本性質教學反思(匯編15篇)04-11

分數的基本性質精品說課稿11-04

《比例的基本性質》教學設計15篇03-31

主站蜘蛛池模板: 久久国产综合精品欧美 | 免费三级网址 | 99色视频在线 | 777丰满影院 | 揉大乳gif动态图 | 国产在线视频专区 | 黄免费看 | 香蕉成人在线 | 欧美一级三级在线观看 | 福利午夜在线 | 日韩精品毛片 | 午夜成私人影院在线观看 | 午夜湿| 国产伦一区二区三区免费 | 欧美图片在线视频 | 天天爽天天 | 一级做a爰片性色毛片视频图片 | 91精品国产乱码久久久久久 | 欧美国产中文字幕 | 黄色成人一级片 | 日本免费一区二区视频 | 亚洲日本va中文字幕在线不卡 | 99re在线精品 | 午夜影院免费体验区 | 免费一级特黄特色大片在线观看看 | 天天插伊人 | 成年免费大片黄在线观看com | 国产高清免费的视频 | 国产99在线观看 | 插丝袜 | a级理论片| 日韩一区二区三区在线 | 免费看的毛片 | 无遮挡h肉动漫在线播放内衣 | 一本一本大道香蕉久在线精品 | 久久免费大片 | 日韩精品午夜视频一区二区三区 | 三级黄色片免费观看 | 东方aⅴ免费观看久久av | 国产精品99久久免费观看 | 香蕉网站视频高清在线观看 |