七年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)就是把一個(gè)時(shí)間段取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)進(jìn)行一次全面系統(tǒng)的總結(jié)的書(shū)面材料,它可以提升我們發(fā)現(xiàn)問(wèn)題的能力,不如立即行動(dòng)起來(lái)寫(xiě)一份總結(jié)吧。總結(jié)你想好怎么寫(xiě)了嗎?下面是小編為大家整理的七年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家分享。
相交線(xiàn)與平行線(xiàn)
1、兩條直線(xiàn)相交所成的四個(gè)角中,相鄰的兩個(gè)角叫做鄰補(bǔ)角,特點(diǎn)是兩個(gè)角共用一條邊,另一條邊互為反向延長(zhǎng)線(xiàn),性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長(zhǎng)線(xiàn)。性質(zhì)是對(duì)頂角相等。
2、三線(xiàn)八角:對(duì)頂角(相等),鄰補(bǔ)角(互補(bǔ)),同位角,內(nèi)錯(cuò)角,同旁?xún)?nèi)角。
3、兩條直線(xiàn)被第三條直線(xiàn)所截:
同位角F(在兩條直線(xiàn)的同一旁,第三條直線(xiàn)的同一側(cè))
內(nèi)錯(cuò)角Z(在兩條直線(xiàn)內(nèi)部,位于第三條直線(xiàn)兩側(cè))
同旁?xún)?nèi)角U(在兩條直線(xiàn)內(nèi)部,位于第三條直線(xiàn)同側(cè))
4、兩條直線(xiàn)相交所成的四個(gè)角中,如果有一個(gè)角為90度,則稱(chēng)這兩條直線(xiàn)互相垂直。其中一條直線(xiàn)叫做另外一條直線(xiàn)的垂線(xiàn),他們的交點(diǎn)稱(chēng)為垂足。
5、垂直三要素:垂直關(guān)系,垂直記號(hào),垂足
6、垂直公理:過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。
7、垂線(xiàn)段最短。
8、點(diǎn)到直線(xiàn)的距離:直線(xiàn)外一點(diǎn)到這條直線(xiàn)的垂線(xiàn)段的長(zhǎng)度。
9、平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。
推論:如果兩條直線(xiàn)都與第三條直線(xiàn)平行,那么這兩條直線(xiàn)也互相平行。如果b//a,c//a,那么b//c
10、平行線(xiàn)的判定:
①同位角相等,兩直線(xiàn)平行。②內(nèi)錯(cuò)角相等,兩直線(xiàn)平行。 ③同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行。
11、推論:在同一平面內(nèi),如果兩條直線(xiàn)都垂直于同一條直線(xiàn),那么這兩條直線(xiàn)平行。
12、平行線(xiàn)的性質(zhì):
①兩直線(xiàn)平行,同位角相等;②兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;③兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)。
13、平面上不相重合的兩條直線(xiàn)之間的位置關(guān)系為_(kāi)______或________
14、平移:①平移前后的兩個(gè)圖形形狀大小不變,位置改變。②對(duì)應(yīng)點(diǎn)的線(xiàn)段平行且相等。
平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱(chēng)平移。
對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。
15、命題:判斷一件事情的語(yǔ)句叫命題。
命題分為題設(shè)和結(jié)論兩部分;題設(shè)是如果后面的,結(jié)論是那么后面的。
命題分為真命題和假命題兩種;定理是經(jīng)過(guò)推理證實(shí)的真命題。
實(shí)數(shù)
一、實(shí)數(shù)的概念及分類(lèi)
1、實(shí)數(shù)的分類(lèi)正有理數(shù)有理數(shù)零有限小數(shù)和無(wú)限循環(huán)小數(shù)
負(fù)有理數(shù)
正無(wú)理數(shù)
無(wú)理數(shù)無(wú)限不循環(huán)小數(shù)
負(fù)無(wú)理數(shù)
整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
正整數(shù)又叫自然數(shù)。
正整數(shù)、零、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為有理數(shù)。
2、無(wú)理數(shù)
在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)之,歸納起來(lái)有四類(lèi):
(1)開(kāi)方開(kāi)不盡的數(shù),如7,2等;
π(2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等; 3
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值
1、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
2、絕對(duì)值
一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對(duì)值時(shí)它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負(fù)數(shù)小于
零,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)。
4.實(shí)數(shù)與數(shù)軸上點(diǎn)的關(guān)系:
每一個(gè)無(wú)理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)表示出來(lái),
數(shù)軸上的點(diǎn)有些表示有理數(shù),有些表示無(wú)理數(shù),
實(shí)數(shù)與數(shù)軸上的點(diǎn)就是一一對(duì)應(yīng)的,即每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示;反過(guò)來(lái),數(shù)軸上的每一個(gè)點(diǎn)都是表示一個(gè)實(shí)數(shù)。
三、平方根、算數(shù)平方根和立方根
1、平方根
(1)平方根的定義:如果一個(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根.即:如果
a,那么x叫做a的平方根.?x2
(2)開(kāi)平方的定義:求一個(gè)數(shù)的平方根的運(yùn)算,叫做開(kāi)平方.開(kāi)平方運(yùn)算的被開(kāi)方數(shù)必須是非負(fù)數(shù)才有意義。
3?3的平方等于9,9的平方根是?(3)平方與開(kāi)平方互為逆運(yùn)算:
(4)一個(gè)正數(shù)有兩個(gè)平方根,即正數(shù)進(jìn)行開(kāi)平方運(yùn)算有兩個(gè)結(jié)果;
一個(gè)負(fù)數(shù)沒(méi)有平方根,即負(fù)數(shù)不能進(jìn)行開(kāi)平方運(yùn)算
(5)符號(hào):正數(shù)a的正的平方根可用表示,也是a的算術(shù)平方根;
正數(shù)a的負(fù)的平方根可用-表示.
a?2(6)x <—> ??x
a是x的平方x的平方是a
x是a的'平方根a的平方根是x
2、算術(shù)平方根
a,那么這個(gè)正數(shù)?(1)算術(shù)平方根的定義:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2
x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作“根號(hào)a”,a叫做被開(kāi)方數(shù).
規(guī)定:0的算術(shù)平方根是0.
。?a (x≥0)中,規(guī)定x?也就是,在等式x2
(2)的結(jié)果有兩種情況:當(dāng)a是完全平方數(shù)時(shí),是一個(gè)有限數(shù);
當(dāng)a不是一個(gè)完全平方數(shù)時(shí),是一個(gè)無(wú)限不循環(huán)小數(shù)。
(3)當(dāng)被開(kāi)方數(shù)擴(kuò)大時(shí),它的算術(shù)平方根也擴(kuò)大;
當(dāng)被開(kāi)方數(shù)縮小時(shí)與它的算術(shù)平方根也縮小。
(4)夾值法及估計(jì)一個(gè)(無(wú)理)數(shù)的大小
a (x≥0)?(5)x2 <—> ?x
a是x的平方x的平方是a
x是a的算術(shù)平方根a的算術(shù)平方根是x
學(xué)習(xí)方法
1.注重預(yù)習(xí)培養(yǎng)自學(xué)能力
在預(yù)習(xí)的時(shí)候,應(yīng)當(dāng)把定理、定律、公式、常數(shù)、特定符號(hào)這些內(nèi)容單獨(dú)匯集在一起,每抄錄一遍,則加深一次印象。上課的時(shí)候,老師講到這些地方時(shí),應(yīng)把自己預(yù)習(xí)時(shí)的理解和老師講的相對(duì)照,看自己有沒(méi)有理解錯(cuò)的地方。預(yù)習(xí)可以用“一劃、二批、三試、四分”的預(yù)習(xí)方法。
一劃:就是圈劃知識(shí)要點(diǎn),基本概念。
二批:就是把預(yù)習(xí)時(shí)的體會(huì)、見(jiàn)解以及自己暫時(shí)不能理解的內(nèi)容,批注在書(shū)的空白地方。
三試:就是嘗試性地做一些簡(jiǎn)單的練習(xí),檢驗(yàn)自己預(yù)習(xí)的效果。
四分:就是把自己預(yù)習(xí)的這節(jié)知識(shí)要點(diǎn)列出來(lái),分出哪些是通過(guò)預(yù)習(xí)已掌握了的,哪些知識(shí)是自己預(yù)習(xí)不能理解掌握了的,需要在課堂學(xué)習(xí)中進(jìn)一步學(xué)習(xí)。
數(shù)學(xué)概念
正確地理解和形成一個(gè)數(shù)學(xué)概念,必須明確這個(gè)數(shù)學(xué)概念的內(nèi)涵——對(duì)象的“質(zhì)”的特征,及其外延——對(duì)象的“量”的范圍。一般來(lái)說(shuō),數(shù)學(xué)概念是運(yùn)用定義的形式來(lái)揭露其本質(zhì)特征的。但在這之前,有一個(gè)通過(guò)實(shí)例、練習(xí)及口頭描述來(lái)理解的階段。
比如,兒童對(duì)自然數(shù),對(duì)運(yùn)算結(jié)果——和、差、積、商的理解,就是如此。到小學(xué)高年級(jí),開(kāi)始出現(xiàn)以文字表達(dá)一個(gè)數(shù)學(xué)概念,即定義的方式,如分?jǐn)?shù)、比例等。有些數(shù)學(xué)概念要經(jīng)過(guò)長(zhǎng)期的醞釀,最后才以定義的形式表達(dá),如函數(shù)、極限等。定義是準(zhǔn)確地表達(dá)數(shù)學(xué)概念的方式。
許多數(shù)學(xué)概念需要用數(shù)學(xué)符號(hào)來(lái)表示。如dy表示函數(shù)y的微分。數(shù)學(xué)符號(hào)是表達(dá)數(shù)學(xué)概念的一種獨(dú)特方式,對(duì)學(xué)生理解和形成數(shù)學(xué)概念起著極大的作用,它把學(xué)生掌握數(shù)學(xué)概念的思維過(guò)程簡(jiǎn)約化、明確化了。許多數(shù)學(xué)概念的定義就是用數(shù)學(xué)符號(hào)來(lái)表達(dá),從而增強(qiáng)了科學(xué)性。
許多數(shù)學(xué)概念還需要用圖形來(lái)表示。有些數(shù)學(xué)概念本身就是圖形,如平行四邊形、棱錐、雙曲線(xiàn)等。有些數(shù)學(xué)概念可以用圖像來(lái)表示,比如函數(shù)y=x+1的圖像。有些數(shù)學(xué)概念具有幾何意義,如函數(shù)的微分。數(shù)形結(jié)合是表達(dá)數(shù)學(xué)概念的又一獨(dú)特方式,它把數(shù)學(xué)概念形象化、數(shù)量化了。
總之,數(shù)學(xué)概念是在人類(lèi)歷史發(fā)展過(guò)程中,逐步形成和發(fā)展的。