勾股定理說課稿模板匯總六篇
作為一名辛苦耕耘的教育工作者,往往需要進行說課稿編寫工作,說課稿有利于教學水平的提高,有助于教研活動的開展。我們應該怎么寫說課稿呢?下面是小編收集整理的勾股定理說課稿6篇,僅供參考,希望能夠幫助到大家。
勾股定理說課稿 篇1
尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數(shù)學》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節(jié)課的理解與設計。
一、教材分析:
(一) 教材的地位與作用
從知識結構上看百度一下,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
從學生認知結構上看,它把形的特征轉化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學生進行愛國主義教育的良好素材,因此具備相當重要的地位和作用。
根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
(二)重點與難點
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引領學生動手實驗突出重點,合作交流突破難點。
二、教學與學法分析
教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導�!币虼私處熇脦缀沃庇^提出問題,引領學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導 為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
三、教學過程
我國數(shù)學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。
首先,情境導入 古韻今風
給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數(shù)學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。
第二步 追溯歷史 解密真相
勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。
從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現(xiàn),在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現(xiàn)了轉化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結合的思想。學生會想到用“數(shù)格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具備局限性。因此教師應引領學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現(xiàn)了“從特殊到一般”的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法, “補”的方法,有的學生可能會發(fā)現(xiàn)平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。
使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。
以上三個環(huán)節(jié)層層深入步步引領,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。
感性認識未必是正確的,推理驗證證實我們的猜想。
第三步 推陳出新 借古鼎新
教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出“學生是學習的主體,教師是組織者、引領者與合作者”這一教學理念。學生會發(fā)現(xiàn)兩種證明方案。
方案1為趙爽弦圖,學生講解論證過程,再現(xiàn)古代數(shù)學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。
教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數(shù)學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數(shù)學的精巧、優(yōu)美。
第四步 取其精華 古為今用
我按照“理解—掌握—運用”的梯度設計了如下三組習題。
�。�1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用
第五步 溫故反思 任務后延
在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節(jié)課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。
然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學生的理念。
四、教學評價
在探究活動中,教師評價、學生自評與互評相結合,從而體現(xiàn)評價主體多元化和評價方式的多樣化。
五、設計說明
本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學文化為主線這一設計理念,展現(xiàn)了我國古代數(shù)學璀璨的歷史,激發(fā)學生再創(chuàng)數(shù)學輝煌的愿望。
以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。
勾股定理說課稿 篇2
(一)創(chuàng)設問題情境,引入新課:
在這一環(huán)節(jié)中,我設計了這樣一個情境,多媒體動畫展示,米老鼠來到了數(shù)學王國里的三角形城堡,要求只利用一根繩子,構造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預測大多數(shù)同學會無從下手,這樣引出課題。只有學習了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認為:“大疑而大進”這樣做,充分調動學習內容,激發(fā)求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質。
(二)實踐猜想
本環(huán)節(jié)要圍繞以下幾個活動展開:
1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。
1a=3b=42a=5b=123a=2.5b=64a=6b=8
2、猜一猜,以下列線段長為三邊的三角形形狀
13cm4cm5cm25cm12cm13cm
32.5cm6cm6.5cm46cm8cm10cm
3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發(fā)現(xiàn)。
4、用恰當?shù)恼Z言敘述你的結論
在算一算中學生復習了勾股定理,猜一猜和擺一擺中學生小組合作動手實踐,在問題1的基礎上做出合理的推測和猜想,這樣分層遞進找到了學生思維的最近發(fā)展區(qū),面向不同層次的每一名學生,每一名學生都有參與數(shù)學活動的機會,最后運用恰當?shù)恼Z言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導學生的實踐活動。學生的擺一擺的過程利用實物投影儀展示,在活動中教師關注;
1)學生的參與意識與動手能力。
2)是否清楚三角形三邊長度的平方關系是因,直角三角形是果。既先有數(shù),后有形。
3)數(shù)形結合的思想方法及歸納能力。
(三)推理證明
八年級正是學生由實驗幾何向推理幾何過渡的重要時期,多數(shù)學生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,而構造直角三角形就成為解決問題的關鍵,直接拋給學生證明,無疑會石沉大海,所以,我采用分層導進的方法,以求一石激起千層浪。
1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?請簡要說明理由?
2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關系?試說明理由?
為了較好完成教師的誘導,教師要給學生獨立思考的時間,要給學生在組內交流個別意見的時間,教師要深入小組指導與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構造直角三角形這一解決問題的關鍵,讓他們在不斷的探究過程中,親自體驗參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點。
勾股定理說課稿 篇3
尊敬的各位評委、老師,大家好!
我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。
教材分析:
如果說數(shù)學思想是解決數(shù)學問題的一首經典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數(shù)學建模的思想、轉化的思想就是歌中最為活躍的音符!本節(jié)的內容是在學習了二次根式之后的教學,是在學生已經掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數(shù)學幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。
勾股定理的發(fā)現(xiàn)、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。
新課標下的數(shù)學教學不僅是知識的教學,更應注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學中的地位和作用,結合初二學生不愛表現(xiàn)、好靜不好動的特點,我確定本節(jié)教學目標如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡單的數(shù)學問題。
3、感受數(shù)學文化,體會解決問題方法的多樣性和數(shù)形結合的思想。
本著課標的要求,在吃透教材的基礎上,我確定本節(jié)的教學重點、難點、關鍵如下:
勾股定理的證明和簡單應用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。
為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:
教法分析:
新課程標準強調要從學生已有的經驗出發(fā),最大限度的激發(fā)學生學習積極性,新課程下的數(shù)學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數(shù)學的過程,激發(fā)學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發(fā)現(xiàn)法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發(fā)展打下堅實的基礎。為了增大課堂容量、給學生創(chuàng)設高效的數(shù)學課堂,給學生提供足夠從事數(shù)學活動的時間,以導學案的形式、運用多媒體輔助教學。
學法分析:
學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養(yǎng)學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養(yǎng)學生的邏輯思維能力和語言表達能力。
為了充分調動學生的學習積極性,創(chuàng)設優(yōu)化高效的數(shù)學課堂,我以導學案的方式循序見進的設計教學流程。
以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環(huán)節(jié)來進行教學
1、勾股定理的探究:讓學生歷經量一量、算一算、想一想的由特殊到一般的數(shù)學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。
3、勾股定理的應用:以課堂練習、學生個性補充和老師適當?shù)膫€性化追加的形式實現(xiàn)對定理的靈活應用。
4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現(xiàn)對本節(jié)內容的鞏固與升華。
說創(chuàng)新點:
為了給學生營造一個和諧、民主、平等而高效的數(shù)學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當?shù)钠瘘c和方法,充分發(fā)揮學生的主體地位與教師主導作用相統(tǒng)一的原則。教學中注重學生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養(yǎng)學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
教學中我注重人文環(huán)境的創(chuàng)設,使數(shù)學課堂充滿親切、民主的氣氛,例如整節(jié)課我以學生的操作、展示、講解、個性補充為主,拉近了數(shù)學與學生的距離,激發(fā)了學生的學習興趣;為了使不同的學生得到不同的發(fā)展,人人學有價值的數(shù)學,在教學中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設身邊暖房工程為情境,體現(xiàn)數(shù)學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現(xiàn)數(shù)學的變化美。
以學生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學生創(chuàng)新思維,使不同的人在數(shù)學上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設了具有獨特教學風格的作文式數(shù)學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數(shù)學文化的薰陶和數(shù)學思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結時由“勾股樹”到“智慧樹”的希望寄語。
勾股定理說課稿 篇4
一、 教材分析
(一)教材地位
這節(jié)課是九年制義務教育初級中學教材北師大版八年級第一章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)教學目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想。
情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。
(三)教學重點:
經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。
二、教法與學法分析:
學情分析:八年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結合八年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
三、 教學過程設計
1、創(chuàng)設情境,提出問題
2、實驗操作,模型構建
3、回歸生活,應用新知
4、知識拓展,鞏固深化5。感悟收獲,布置作業(yè)
(一)創(chuàng)設情境提出問題
樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié)。
實驗操作模型構建
1、等腰直角三角形(數(shù)格子)
2、一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。
通過以上實驗歸納總結勾股定理。
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律。
回歸生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心。
四、知識拓展鞏固深化
基礎題,情境題,探索題。
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華。
基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。
探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。
五、感悟收獲布置作業(yè):
這節(jié)課你的收獲是什么?
1、課本習題2。1
2、搜集有關勾股定理證明的資料。
板書設計 探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
李景萍《探索勾股定理》第一課時說課稿
設計說明:
1、探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法.
2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平。
勾股定理說課稿 篇5
各位考官,大家好,我是X號考生,今天我說課的內容是《勾股定理的逆定理》。根據(jù)新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。
教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。
一、說教材
“勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內容之一。
二、說學情
中學生心理學研究指出,初中階段是智力發(fā)展的關鍵年齡,學生邏輯思維從經驗型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學生此前學習了三角形有關的知識,掌握了直角三角形的性質和勾股定理,學生在此基礎上學習勾股定理的逆定理可以加深理解。
三、說教學目標
根據(jù)數(shù)學課標的要求和教材的具體內容結合學生實際我確定了如下教學目標。
【知識與技能】
理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。
【過程與方法】
通過勾股定理的逆定理的證明,體會數(shù)與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
【情感態(tài)度與價值觀】
通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
四、說教學重難點
重點:勾股定理逆定理的應用;
難點:探究勾股定理逆定理的證明過程。
五、說教學方法
科學合理的教學方法能使教學效果事半功倍,達到教與學的和諧完美統(tǒng)一。基于此,我準備采用的教法是講練結合法,小組討論法。
六、說教學過程
(一)導入新課
在導入新課環(huán)節(jié),我會采用溫故知新的導入方法,先讓學生回顧勾股定理有關知識,并引入本節(jié)課的課題——勾股定理逆定理。
【設計意圖】通過復習回顧能很好地將新舊知識聯(lián)系起來,使學生形成對知識的系統(tǒng)的認識。并且由舊知開始,能很好地幫助學生克服畏難情緒。
(二)探究新知
一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結,然后便得到一個直角三角形這是為什么?這個問題一出現(xiàn),馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視激發(fā)了學生的興趣,因而全身心地投入到學習中來創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐不失時機地讓學生感到數(shù)學就在身邊。
因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機讓他們從個體實踐經驗中開始學習可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設計是因為勾股定理逆定理的證明方法是學生第一次見,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。
接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質,證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學生不是被動接受勾股定理的逆定理?因而使學生感到自然、親切。學生的學習興趣和學習積極性有所提高,使學生確實在學習過程中享受到自我創(chuàng)造的快樂。
在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學生看書的習慣這也是在培養(yǎng)學生的自學能力。
(三)鞏固提高
本著由淺入深的原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學生口答讓所有的學生都能完成。
第二題則進了一層用字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識又可以提高靈活運用以往知識的能力。
思維提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的'學習過程,隨時反饋調節(jié)教法同時注意加強有針對性的個別指導把發(fā)展學生的思維和隨時把握學生的學習效果結合起來。
(四)小結作業(yè)
在小結環(huán)節(jié),我會隨機詢問學生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應用需要注意點什么等問題,先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結思想方法培養(yǎng)能力方面比如輔助線的添法。
設計意圖:這樣設計可以幫助學生以反思的形式回憶本節(jié)課所學的知識,加深對知識的印象,有利于學生良好的數(shù)學學習習慣的養(yǎng)成。
由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎題,我會用ppt出示關于勾股定理的逆定理的計算題目,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。第二組是開放性題目,讓學生課后思考總結一下判定一個三角形是直角三角形的方法。
勾股定理說課稿 篇6
一、說教材分析:
(一)本節(jié)內容在全書和章節(jié)的地位
這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。
(二)三維教學目標:
1.【知識與能力目標】
⒈理解并掌握勾股定理的內容和證明,能靈活運用勾股定理及其計算;
�、餐ㄟ^觀察分析,大膽猜想,并且探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
2.【過程與方法目標】
在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數(shù)學思想,并且體會數(shù)形結合和從特殊到一般的思想方法。
3.【情感態(tài)度與價值觀】通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。
(三)教學重點、難點:
【教學重點】勾股定理的證明與運用
【教學難點】用面積法等方法證明勾股定理
【難點成因】對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數(shù)學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。
【突破措施】:
�、眲�(chuàng)設情景,激發(fā)思維:創(chuàng)設生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;
⒉自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數(shù)學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;
�、硰垞P個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結束后,由小組的“發(fā)言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。
二、說教法與學法分析
【教法分析】數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神�;镜慕虒W程序是“創(chuàng)設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業(yè)”六個方面。
【學法分析】新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并且參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使得學生真正的成為學習的主人。
三、說教學過程設計
(一)創(chuàng)設情景
多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
問題的設計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務于生活”。
(二)動手操作
⒈課件出示課本P99圖19.2.1:
觀察圖中用陰影畫出的三個正方形,你從中能得出什么結論?
學生可能會考慮到各種不同的思考方法,老師要給予肯定,并且要鼓勵學生用語言進行描述,引導學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則 AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。
�、簿o接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。
�、吃賳枺寒斶呴L不為整數(shù)的直角三角形是否也是存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。
(三)歸納驗證
【歸納】通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數(shù)學的樂趣,,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整一堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。
【驗證】先后的三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結合和從特殊到一般的數(shù)學思想,而且這一過程也是有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。
(四)問題解決
�、弊寣W生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。
⒉自學課本P101例1,然后完成P102練習。
(五)課堂小結
1.小組成員從內容、數(shù)學思想方法、獲取知識的途徑進行小結,后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。
2.教師用多媒體介紹“勾股定理史話”
�、佟吨荀滤銖健罚何髦艿纳谈�(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
�、诳滴鯏�(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。
目的是對學生進行愛國主義教育,激勵學生要奮發(fā)向上。
(六)布置作業(yè)
課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。
【勾股定理說課稿模板匯總六篇】相關文章:
勾股定理說課稿15篇02-04
《探索勾股定理》的說課稿11-30
勾股定理說課稿范文7篇02-04
勾股定理的逆定理說課稿12-04
勾股定理的逆定理說課稿4篇12-04
初中地理說課稿模板《北京》說課稿12-29
《離騷》說課稿模板12-05
蘭亭集序說課稿模板匯總6篇03-27
小學音樂說課稿模板12-27