基于改進多級中值濾波的加權濾波算法論文
摘 要: 為了有效地抑制圖像中的椒鹽噪聲,更好地保持圖像細節,提出一種基于多級中值濾波的加權濾波算法。算法采用5×5濾波窗口,如果中心點為噪聲點,則將濾波窗口劃分為水平和垂直10個條形子窗口,先計算每個子窗口內所有非噪聲點的均值,作為加權運算的基礎值,然后求出這些基礎值的中值,利用每個基礎值與它們中值的差計算出每個基礎值的相應權值。最后將這些基礎值與對應權值進行加權運算,將結果替換中心點的像素值;如果中心點為非噪聲點,則保持原值不變。實驗結果表明,該算法對于高密度椒鹽噪聲污染的圖像具有良好的去噪性能,并且較好地保持了圖像的細節,效果優于傳統的中值濾波算法和多級中值濾波算法。
關鍵詞: 多級中值濾波; 椒鹽噪聲; 條形子窗口; 加權濾波算法
引 言
椒鹽噪聲是一種由攝像系統的物理缺陷或信號傳輸過程中的解碼錯誤而產生的黑白相間的點噪聲,該噪聲表現為噪聲點的灰度值與其鄰域像素點的灰度值明顯不同[1]。由于椒鹽噪聲的存在,使圖像的后續處理(如圖像識別及圖像分割等)效果較差甚至無法進行,因此如何有效地去除圖像中的椒鹽噪聲一直以來都是圖像預處理領域研究的熱點之一。
在去除圖像椒鹽噪聲算法中,傳統中值濾波是一種常用的有效方法,算法采用小窗口鄰域像素的中值代替原圖像中各個像素的灰度值,對脈沖噪聲具有良好的抑制作用,圖像邊緣等細節保持較好,但不足的是算法對噪聲圖像所有像素點均利用鄰域中值替換,使得算法在較高密度噪聲污染情況下,濾波性能急劇下降,甚至失去去噪性能,而且邊緣容易產生移位,紋理細節不太清晰。為此,一些改進的中值濾波算法[2?5]被提出,這些算法在一定程度上改善了中值濾波的性能,能夠濾除較好密度的椒鹽噪聲,但對于圖像的邊緣細節的保護還不是很理想。多級中值濾波算法如文獻[6?7]算法對于隨機的脈沖噪聲濾除很有效,而且能夠較好地保持圖像的邊緣信息,使其不被模糊和移位,但對于較高密度的椒鹽噪聲不能很好地濾除。文獻[8]提出了一種改進的多級中值濾波算法(VHWR),算法較好地保持了圖像細節,對較高密度的椒鹽噪聲濾波效果有了很大的提高,但當噪聲密度超過80%時,去噪效果不理想。
為了有效地去除椒鹽噪聲,更好地保護圖像的細節信息,提出了一種改進的多級中值濾波加權算法。算法借鑒了多級中值濾波的`思想,采用文獻[8]劃分子窗口方法的基礎上,對噪聲點采用了鄰域子窗口均值加權的方法進行濾除,在有效去除椒鹽噪聲的同時,對圖像邊緣等細節保護良好。
2 VHWR算法
3 本文算法
傳統多級中值濾波算法MLM+及改進的算法VHWR通過多子窗口的劃分,采用子窗口的中值進行平滑噪聲點,對圖像中的邊緣、細線及紋理等細節保持較好,但它們共同的特點是在高噪聲密度情況下,去噪性能較差。因此,本文在借鑒多級中值濾波算法子窗口劃分思想的同時,對噪聲點的平滑時引入了加權方法,算法原理如下。
3.1 子窗口劃分
設f(i,j)為椒鹽噪聲圖像,對于灰度圖像來說,椒鹽噪聲點的灰度值主要表現為0或255。算法采用開關策略,如果濾波窗口中心點為非噪聲點,則保持原值輸出;如果是噪聲點,則進行平滑處理,則將5×5濾波窗口劃分為水平和垂直共10個條形子窗口,如圖3所示。
5 結 語
在多級中值濾波算法基礎上,提出了一種新的濾除椒鹽噪聲的濾波算法。該算法借鑒了多級中值濾波子窗口劃分的思想,將濾波窗口劃分為水平方向和垂直方向多個子窗口,采用開關策略,在濾除噪聲過程中計算各子窗口去除非噪聲點的像素點的灰度均值和中值,并采用閾值優化方法進行加權運算,對噪聲點進行平滑。仿真實驗結果證明了本文算法在不同密度椒鹽噪聲情況下具有較強的去噪能力,同時較好地保持了圖像的邊緣等細節,算法的濾波性能明顯優于其他幾種算法,具有一定的應用價值。
參考文獻
[2] 孫樹亮,王守覺.一種基于改進的極值中值濾波算法[J].計算機科學,2009,36(6):165?166.
[4] 王建勇,周曉光,廖啟征.一種基于中值?模糊技術的混合噪聲濾波器[J].電子與信息學報,2006,28(5):901?904.
[5] 張恒,雷志輝,丁曉華.一種改進的中值濾波算法[J].中國圖象圖形學報,2004,9(4):408?411.
[7] 李振春,張成玉,王清振.基于小波變換與多級中值濾波的聯合去噪方法[J].石油物探,2009,48(5):470?474.
【基于改進多級中值濾波的加權濾波算法論文】相關文章:
FIR數字濾波器分布式算法的原理及FPGA實現論文06-20
用S變換做精細時變濾波論文04-28
抑制開關電源紋波的研究-濾波器論文06-12
基于遺傳算法的優化設計論文04-22
一種改進的移動Agent主動通信算法論文06-16