国产午夜精品久久久久免费视-国产午夜三级-国产性大片黄在线观看在线放-国产性老妇女做爰在线-一区一精品-一区在线观看

實用文檔>函數必考性質總結歸納

函數必考性質總結歸納

時間:2024-07-15 13:37:25

函數必考性質總結歸納

函數必考性質總結歸納

函數必考性質總結歸納

  一、定義與定義式:

  自變量x和因變量y有如下關系:

  y=kx+b

  則此時稱y是x的一次函數。

  特別地,當b=0時,y是x的正比例函數。

  即:y=kx (k為常數,k0)

  二、一次函數的性質:

  1.y的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b (k為任意不為零的實數 b取任何實數)

  2.當x=0時,b為函數在y軸上的截距。

  三、一次函數的圖像及性質:

  1.作法與圖形:通過如下3個步驟

 。1)列表;

 。2)描點;

  (3)連線,可以作出一次函數的圖像一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

  2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。

  3.k,b與函數圖像所在象限:

  當k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b<0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

  這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

  四、確定一次函數的表達式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

 。1)設一次函數的表達式(也叫解析式)為y=kx+b。

 。2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b …… ① 和y2=kx2+b …… ②

 。3)解這個二元一次方程,得到k,b的值。

 。4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用:

  1.當時間t一定,距離s是速度v的一次函數。s=vt。

  2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

  六、常用公式:(不全,希望有人補充)

  1.求函數圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線段的中點:|x1-x2|/2

  3.求與y軸平行線段的中點:|y1-y2|/2

  4.求任意線段的長:(x1-x2)^2+(y1-y2)^2 (注:根號下(x1-x2)與(y1-y2)的平方和)

  二次函數

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:

  y=ax^2+bx+c

 。╝,b,c為常數,a0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II.二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a0)

  頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x ?) [僅限于與x軸有交點A(x? ,0)和 B(x?,0)的拋物線]

  注:在3種形式的互相轉化中,有如下關系:

  h=-b/2ak=(4ac-b^2)/4a x?,x?=(-bb^2-4ac)/2a

  III.二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,

  可以看出,二次函數的圖像是一條拋物線。

  IV.拋物線的性質

  1.拋物線是軸對稱圖形。對稱軸為直線

  x= -b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標為

  P( -b/2a,(4ac-b^2)/4a )

  當-b/2a=0時,P在y軸上;當= b^2-4ac=0時,P在x軸上。

  3.二次項系數a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項系數b和二次項系數a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點個數

  = b^2-4ac>0時,拋物線與x軸有2個交點。

  = b^2-4ac=0時,拋物線與x軸有1個交點。

  = b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x= -bb^2-4ac 的值的相反數,乘上虛數i,整個式子除以2a)

  V.二次函數與一元二次方程

  特別地,二次函數(以下稱函數)y=ax^2+bx+c,

  當y=0時,二次函數為關于x的一元二次方程(以下稱方程),

  即ax^2+bx+c=0

  此時,函數圖像與x軸有無交點即方程有無實數根。

  函數與x軸交點的橫坐標即為方程的根。

  1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

  解析式 頂點坐標對 稱 軸

  y=ax^2(0,0) x=0

  y=a(x-h)^2(h,0) x=h

  y=a(x-h)^2+k(h,k) x=h

  y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a) x=-b/2a

  當h0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當h0時,則向左平行移動|h|個單位得到.

  當h0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

  當h0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

  當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

  當h0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

  因此,研究拋物線 y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a0),若a0,當x-b/2a時,y隨x的增大而減;當x-b/2a時,y隨x的增大而增大.若a0,當x-b/2a時,y隨x的增大而增大;當x-b/2a時,y隨x的增大而減。

  4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b^2-4ac0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的兩根.這兩點間的距離AB=|x?-x?|

  當△=0.圖象與x軸只有一個交點;

  當△0.圖象與x軸沒有交點.當a0時,圖象落在x軸的上方,x為任何實數時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數時,都有y0.

  5.拋物線y=ax^2+bx+c的最值:如果a0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

  6.用待定系數法求二次函數的解析式

  (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

  y=ax^2+bx+c(a0).

  (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a0).

  (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a0).

  7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

  反比例函數

  形如 y=k/x(k為常數且k0) 的函數,叫做反比例函數。

  自變量x的取值范圍是不等于0的一切實數。

  反比例函數圖像性質:

  反比例函數的圖像為雙曲線。

  由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。

  另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。

  當K>0時,反比例函數圖像經過一,三象限,是減函數

  當K<0時,反比例函數圖像經過二,四象限,是增函數

  反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

  知識點:

  1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。

  2.對于雙曲線y=k/x ,若在分母上加減任意一個實數 (即 y=k/(xm)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

【函數必考性質總結歸納】相關文章:

集合與函數概念總結10-25

物態變化歸納總結01-04

名詞性從句語法總結歸納02-14

16種英語時態總結歸納09-10

只能接ing的動詞歸納總結02-17

英語十六種時態總結歸納12-24

《減法性質、除法性質》教學設計02-23

反三角函數公式總結11-03

垂線的性質及平行線的判定總結10-21

高中化學各種物質的性質總結05-16

用戶協議
主站蜘蛛池模板: 免费久久网 | 欧美成人午夜免费完成 | 成人看免费一级毛片 | 一级毛片免费毛片毛片 | 日本黄线在线播放免费观看 | 成人18免费网站在线观看 | 日韩国产午夜一区二区三区 | 欧美日韩精品乱国产 | 国产精品欧美激情第一页 | 国产欧美日韩在线播放 | 欧美视频在线不卡 | 天天摸夜夜添久久精品麻豆 | 全免费一级毛片在线播放 | 特黄一级黄色片 | 天天操2021 | 又黄又爽又成人免费视频 | 国产女人视频免费观看 | 看全色黄大色黄大片 视 | 日本在线一区二区 | 免费福利在线看黄网站 | 2018天天操天天干 | 韩日在线播放 | 一本大道香蕉高清久久 | 日韩一级淫片 | 久久综合五月天 | 成人免费在线视频网 | 久久天天躁夜夜躁狠狠躁2020 | 日韩毛片高清免费 | 天天干夜夜操美女 | 日日干夜夜操s8 | 国产黄色福利 | 午夜免费影视 | 国产精品久久久久久久久免费hd | 九九伦理 | 毛片福利 | 成人国产精品视频频 | 免费的黄色一级片 | 全部免费特黄特色大片视频 | 欧美日韩精品一区二区三区视频 | 日日噜噜夜夜狠狠va视频 | 波多野结衣与公中出中文字幕 |